Watermelon

Kamis, 24 Maret 2016

Kelas-Kelas IP Address


IP address versi 4 terdiri atas 4 oktet, nilai 1 oktet adalah 255. Karena ada 4 oktet maka jumlah IP address yang tersedia adalah 255 x 255 x 255 x 255. IP address sebanyak ini harus dibagi-bagikan keseluruh pengguna jaringan internet di seluruh dunia. Untuk mempermudah proses pembagiannya, IP address harus dikelompokan dalam kelas-kelas. Dasar pertimbangan pembagian IP address ke dalam kelas-kelas adalah untuk mempermudah pendistribusian pendaftaran IP address.

IP address dikelompokan dalam lima kelas, yaitu kelas A, B, C, D, dan E. Perbedaannya terletak pada ukuran dan jumlah. IP address kelas AjaringanIP address Kelas B digunakan untuk jaringan berukuran besar dan sedang. IP address Kelas C untuk pembagian jaringan yang banyak, namun masing-masing jaringan memiliki anggota yang sedikit. IP address Kelas D dan E juga didefinisikan, tetapi tidak digunakan dalam penggunaan normal, kelas d diperuntukan bagi jaringan multicast, dan E untuk Eksperimental.

Pembagian kelas-kelas IP address didasarkan pada dua hal, yaitu Network ID dan Host ID dari suatu IP address  Setiap IP address selalu merupakan pasangan network ID (Identitas Jaringan) dan Host ID (Indentitas host dalam suatu jaringan). Masing-masing komputer/router di suatu jaringan host ID-nya harus Unik (harus berbeda dgn komputer yg lain).

Kelas-Kelas IP Address
Bit (kependekat dari Binary Digit ) adalah bilangan biner yg terdiri dari 2 angka : 0 dan 1
Oktet, 1 Oktet = 8 bit = nilainya antara 0 - 255 desimal

Kelas A

Format : 0nnnnnnn.hhhhhhhh.hhhhhhhh.hhhhhhhh (n = Net ID, h = Host ID)
Bit Pertama : 0
Panjang Net ID : 8 bit (1 oktet)
Panjang Host ID : 24 bit (3 oktet)
Oktet pertama : 0 - 127
Range  IP address : 1.xxx.xxx.xxx.sampai 126.xxx.xxx.xxx (o dan 127 dicadangkan)
Jumlah Network : 126
Jumlah IP address : 16.777.214
IP kelas A untuk sedikit jaringan dengan host yang sangat banyak. cara membaca IP address kelas A misalnya 113.46.5.6 ialah : Network ID :113, Host ID = 46.5.6
Kelas B

Format : 10nnnnnn.nnnnnnnn.hhhhhhhh.hhhhhhhh (n = Net ID, h = Host ID)
2 bit pertama : 10
Panjang Net ID : 16 bit (2 oktet)
Panjang Host ID : 16 bit (2 oktet)
Oktet pertama : 128 - 191
Range IP address : 128.0.0.xxx sampai 191.255.xxx.xxx
Jumlah Network : 16.384
Jumlah IP address : 65.534
Biasa digunakan untuk jaringan besar dan sedang. dua bit pertama selalu di set 10. 16 bit selanjutnya, network IP kelas B dapat menampung sekitar 65000 host.
Kelas C

Format : 110nnnnn.nnnnnnnn.nnnnnnnn.hhhhhhhh (n = Net ID, h = Host ID)
3 bit pertama : 110
Panjang Net ID : 24 bit (3 oktet)
Panjang Host ID : 8 bit (1 oktet)
Oktet pertama : 192 - 223
Range IP address : 192.0.0.xxx sampai 255.255.255.xxx
Jumlah Network : 2.097.152
Jumlah IP address : 254
Host ID adalah 8 bit terakhi, dengan IP kelas C, dapat dibentuk sekitar 2 juta network yang masing-masing memiliki 256 IP address  Tiga bit pertama IP address kelas C selalu berisi 111 dengan 21 bit berikutnya. Host ID ialah 8 bit terakhir.
Kelas D

Format : 1110mmmm.mmmmmmmm.mmmmmmmm.mmmmmmmm
4 Bit pertama : 1110
Bit multicast : 28 bit
Byte Inisial : 224-247
Deskripsi : Kelas D adalah ruang alamat multicast
Kelas ini digunakan untuk keperluan Multicasting. 4 bit pertama 1110, bit-bit berikutnya diatur sesuai keperluan multicast group yang menggunakan IP address ini. Dalam multicasting tidak dikenal network bit dan host bit.
Kelas E

Format : 1111rrr.rrrrrrrr.rrrrrrrr.rrrrrrrr
4 bit pertama : 1111
Bit cadangan : 28 bit
Byte inisial : 248-255
Deskripsi : Kelas E adalah ruang alamat yang dicadangkan untuk keperluan eksperimental.


sumber: http://www.transiskom.com/2012/10/kelas-kelas-ip-address.html

Kamis, 10 Maret 2016

Komponen Dan Cara Kerja Hardisk

Komponen Dan Cara Kerja Harddisk Terlengkap

Komponen Dan Cara Kerja HarddiskHarddisk Drive atau yang sering disebut sebagai ‘ Harddisk saja ‘ merupakan salah satu komponen terpenting dalam komputer. Harddisk Drive mempunyai nama lain yang secara umum disebut recording media yang berfungsi untuk menyimpan data ( informasi ). Banyak dari kita yang menggunakan harddisk, tetapi mungkin sedikit sekali orang yang mengetahui asal usul dari Harddisk Drive. Oleh karena itu dalam forum ini saya mencoba untuk membahas asal usul dari Harddisk terlebih dahulu.
Harddisk Drive pertama kali dibuat dan diproduksi oleh perusahaan IBM pada tahun 1956 yang kemudian disebut sebagai HDD Generasi pertama. HDD pertama ini ditemukan dan diciptakan oleh Reynold Johnson. HDD ini berlabel RAMAC 305 yang mempunyai kapasitas 5 Mega Bits atau 5.000.000 bits dan berukuran 24 INCH dan menggunakkan single head dalam pengaksessaanya.

Pada tahun 1961 IBM menciptakan HDD dengan menggunakkan head yang terpisah dalam setiap komponen datanya. Yang disebut juga Disk Storage Unit Control System Meganical International System. Dan HDD pertama yang dapat removable ( dapat dicopot atau dipasang lagi ) adalah IBM 1311, yang menggunakan IBM 1316 untuk menyimpan 2 juta karakter.
Di tahun 1973, IBM mengenalkan IBM 3340, yang merupakkan HDD pertama yang menggunakan sistem disk “ Whincester “, yang pertama menggunakan sealed head/disk assembly ( HDA ). Teknologi ini didesign oleh Kenneth Haughton.
Sebelum tahun 1980-an, kebanyakkan HDD berurukuran 8 INCH atau 14 INCH, sehingga membutuhkan banyak tempat untuk menyimpan HDD tersebut. Sampai pada tahun 1980, ketika Seagate teknologi mengenalakan ST-506 yang merupakan HDD pertama yang berukuran 5,25 inch dengan kapasitas 5 megabites. Dan sekarang ini bahkan, HDD sudah mencapai kapasitas Terrabites dalam ukuran 3,5 inch,
Komponen Dan Cara Kerja Harddisk Terlengkap
Komponen Dan Cara Kerja Harddisk Terlengkap
Fungsi Harddisk

Harddisk merupakan ruang simpan utama dalam sebuah computer. Di situlah seluruh sistem operasi dan mekanisme kerja kantor dijalankan, setiap data dan informasi disimpan.
Dalam sebongkah harddisk, terdapat berbagai macam ruangruang kecil (direktori, folder, subdirektori, subfolder), yang masing-masing dikelompokkan berdasarkan fungsi dan kegunaannya. Di situlah data-data diletakkan.
Ruang kecil dalam harddisk bekerja dalam logika saling tergantung (interdependent). Data/informasi dalam satu ruang kadangkala diperlukan untuk menggerakkan data/ informasi yang berada di ruang lain. Ada ruang di mana data di dalamnya tidak boleh diutak-atik atau dipindahkan ke tempat lain, ada ruang di mana kita bisa membuang dan menaruh data secara bergantian sesuai kebutuhan.
Harddisk terdiri atas beberapa komponen penting. Komponen utamanya adalah pelat (platter) yang berfungsi sebagai penyimpan data. Pelat ini adalah suatu cakram padat yang berbentuk bulat datar, kedua sisi permukaannya dilapisi dengan material khusus sehingga memiliki pola-pola magnetis. Pelat ini ditempatkan dalam suatu poros yang disebut spindle.

Komponen-komponen Harddisk dan Fungsinya

Platter
Berbentuk sebuah Pelat atau piringan yang berfungsi sebagai penyimpan data.Berbentuk bulat,merupakan cakram padat,memiliki pola-pola magnetis pada pada sisi-sisi permukaanya.Platter terbuat dari metal yang mengandung jutaan magnet-magnet kecil yang disebut dengan magnetic domain.Domain-domain ini diatur dalam satu atau dua arah untuk mewakili binary “1” dan “0”
Dalam piringan tersebut terdiri dari beberapa track, dan beberapa sector, dimana track dan sctor ini adalah tempat penyimpanan data serta file system. Misalnya hardisk kita berkapasitas 40 GB, bila di format kapasitasnya tidak sampai 40 Gb. karena harus ada trac dan sector yang dipakai untuk menyimpan ID pengenal dari formating hardisk tersebut.
Jumlah pelat dari masing-masing harddisk berbeda-beda,tergantung pada teknologi yang digunakan dan kapasitas yang dimiliki tiap harddisk.Untuk harddisk-harddisk keluaran terbaru,biasanya sebuah plat memiliki daya tampung 10 sampai 20 Gigabyte.Contohnya sebuah Harddisk berkapasitas 40 Gigabyte,biasanya terdiri dari dua buah plat yang masing-masing berkapasitas 20 Gigabyte. 
Spindle

Spindle merupakan suatu poros tempat meletakan platter.Poros ini memiliki sebuah penggerak yang berfungsi untuk memutar pelat harddisk yang disebut dengan spindle motor.Spimdle inilah yang berperan ikut dalam menentukan kualitas harddisk karena makin cepat putaranya,berarti makin bagus kualitas harddisknya.Satuan untuk mengukur perputaran adalah Rotation Per Minutes atau biasa disebut RPM.Ukuran yang sering kita dengar untuk kecepatan perputaran ini antara lain 5400 RPM,7200 RPM atau 10000 RPM. 

Komponen Dan Cara Kerja Harddisk Terlengkap
Komponen Dan Cara Kerja Harddisk Terlengkap
Head
Piranti ini berfungsi untuk membaca data pada permukaan pelat dan merekam informasi ke dalamnya.Setiap pelat harddisk memiliki dua buah head.Satu di atas permukaan dan satunya lagi dibawah permukaan. Head ini berupa piranti yang elektromagnetik yang ditempatkan pada permukaan pelat dan menempel pada sebuah slider.Slider melekat pada sebuah tangkai yang melekat pada actuator arms.Actuator arms dipasang mati pada poros actuator oleh suatu papan yang disebut dengan logic board.
Oleh karena itu pada saat hardisk bekerja tidak boleh ada guncangan atau getaran, karena head dapat menggesek piringan hardisk sehingga akan mengakibatkan Bad Sector, dan juga dapat menimbulkan kerusakan Head Harddisk sehingga hardisk tidak dapat lagi membaca Track dan Sector dari Hardisk. 
Logic Board

Logic Board merupakan papan pengoperasian pada hardisk, dimana pada logic Board terdapat Bios Hardisk sehingga hardisk pada saat dihubungkan ke Mother Board secara otomatis mengenal hardisk tersebut, seperti Maxtor, Seagete dll. selain tempat Bios hardisk Logic Board juga tempat switch atau pendistribusian Power Supply dan data dari Head Hardisk ke mother Board untuk ki kontrol oleh Processor. 
Setting Jumper
Setiap hardis memiliki setting jumper, fungsinya untuk menentukan kedudukan hardisk tersebut.
Actual Axis
Adalah poros untuk menjadi pegangan atau sebagai tangan robot agar Head dapat membaca sctor dari hardisk.  Adalah kabel penghubung antara hardisk dengan matherboard untuk mengirim atau menerima data.


Ribbon Cable
Ribbon cable adalah penghubung antara Head dengan Logic Board, dimana setiap dokumen atau data yang di baca oleh Head akan di kirim ke Logic Board untuk selanjutnya di kirim ke Mother Board agar Processor dapat memproses data tersebut sesuai dengan input yang di terima. 
Sekarang ini hardisk rata-rata sudah menggunakan system SATA sehingga tidak memerlukan kabel Pita (Cable IDE) Bila pada komputer kita dipasang 2 buah hardisk, maka dengan menyeting Setting Jumper kita bisa menentukan mana hardisk Primer dan mana Hardisk Sekunder yang biasanya disebut Master dan Slave.
Master adalah hardisk utama tempat system di instal, sedangkan Slave adalah hardisk ke dua biasanya dibutuhkan untuk tempat penyimpanan dokumen dan data. Bila Jumper settingnya tidak di set, maka hardisk tersebut tidak akan bekerja. 


Power Conector
Adalah sumber arus yang langsung dari power supply. Power supply pada hardisk ada dua bagian :
1. Tegangan 12 Volt, berfungsi untuk menggerakkan mekanik seperti piringan dan Head.

2. Tegangan 5 Volt, berfungsi untuk mesupply daya pada Logic Board agar dapat bekerja mengirim dan menerima data. 

Jenis-jenis Harddisk :
1. ATA/IDE/EIDGE
2. Serial ATA (SATA)
3. SCSI (Small Computer System Interface)
4. SAS,IEEE 1394
5. SSD (Solid State Drive)


Cara Kerja Harddisk
Langkah Pertama
Dilakukan pengaksesan terhadap harddisk untuk melihat dan menentukan di lokasi sebelah mana informasi yang dibutuhkan ada di dalam ruang harddisk.
Pada proses ini, aplikasi yang kita jalankan, Sistem operasi, sistem BIOS, dan juga driver-driver khusus (tergantung pada aplikasi yang kita jalankan) bekerja bersama-sama, untuk menentukan bagian mana dari harddisk yang harus dibaca.


Langkah Kedua
Harddisk akan bekerja dan memberikan informasi di mana data/informasi yang dibutuhkan tersedia, sampai kemudian menyatakan, “Informasi yang ada di track sekian sektor sekianlah yang kita butuhkan.” Nah pola penyajian informasi yang diberikan oleh harddisk sendiri biasanya mengikuti pola geometris.
Yang dimaksud dengan pola geometris di sini adalah sebuah pola penyajian informasi yang menggunakan istilah silinder, track, dan sector. Ketika informasi ditemukan, akan ada permintaan supaya mengirimkan informasi tersebut melalui interface harddisk untuk memberikan alamat yang tepat (sektor berapa, track berapa, silinder mana) dan setelah itu informasi/data pada sector tersebut siap dibaca.
Langkah Ketiga
Pengendali program yang ada pada harddisk akan mengecek untuk memastikan apakah informasi yang diminta sudah tersedia pada internal buffer yang dimiliki oleh harddisk (biasanya disebut cache atau buffer).
Bila sudah oke, pengendali ini akan menyuplai informasi tersebut secara langsung, tanpa harus melihat lagi ke permukaan pelat itu karena seluruh informasi yang dibutuhkan sudah dihidangkan di dalam buffer.
Dalam banyak kejadian, harddisk pada umumnya tetap berputar ketika proses di atas berlangsung. Namun ada kalanya juga tidak, lantaran manajemen power pada harddisk memerintahkan kepada disk untuk tidak berputar dalam rangka penghematan energi. Papan pengendali yang ada di dalam harddisk menerjemahkan instruksi tentang alamat data yang diminta dan selama proses itu berlangsung, ia akan senantiasa siaga untuk memastikan pada silinder dan track mana informasi yang dibutuhkan itu tersimpan.
Nah, papan pengendali ini pulalah yang kemudian meminta actuator untuk menggerakkan head menuju ke lokasi yang dimaksud. Ketika head sudah berada pada lokasi yang tepat, pengendali akan mengaktifkan head tersebut untuk melakukan proses pembacaan. Mulailah head membaca track demi track untuk mencari sektor yang diminta. Proses inilah yang memakan waktu, sampai kemudian head menemukan sektor yang tepat dan kemudian siap membacakan data/informasi yang terkandung di dalamnya.

Langkah Terakhir
Papan pengendali akan mengkoordinasikan aliran informasi dari harddisk menuju ke ruang simpan sementara (buffer, cache). Informasi ini kemudian dikirimkan melalui interface harddisk menuju sistem memori utama untuk kemudian dieksekusi sesuai dengan aplikasi atau perintah yang kita jalankan.

sumber:  http://tomkompi.blogspot.co.id/2013/11/Komponen-Dan-Cara-Kerja-Harddisk-Terlengkap.html

Rabu, 09 Maret 2016

Media Penyimpanan Data

Perangkat Penyimpanan dan Penyediaan Data

Pengertian Perangkat dan Penyediaan Data

Penyimpanan data komputer, berasal dari bahasa Inggris "computer data storage"sering disebut sebagai memori komputer, merujuk kepada komponen komputer, perangkat komputer, dan media perekaman yang mempertahankan data digital yang digunakan untuk beberapa interval waktu.
Penyimpanan data komputer menyediakan salah satu tiga fungsi inti dari komputer modern, yakni mempertahankan informasi. Ia merupakan salah satu komponen fundamental yang terdapat di dalam semua komputer modern, dan memiliki keterkaitan dengan mikroprosesor, dan menjadi model komputer yang digunakan semenjak 1940-an.

Macam-Macam Perangkat dan Penyediaan Data

Beberapa contoh perangkat dan penyediaan data, yaitu :

1. Hard Disk

Hard Disk adalah perangkat keras komputer/laptop yang bekerja secara sistematis dimana menjadi media penyimpanan data. Data-data yang telah disimpan di dalam perangkat harddisk tidak akan hilang. Bahkan apabila pengguna mematikan perangkat komputer/laptop. Dengan kata lain, harddisk memiliki peran sebagai media penyimpanan yang bersifat permanen (data-data tidak akan hilang atau terhapus). Kapasitas daya tampung daripada harddisk itu sendiri juga terbilang cukup besar. Dimana kalkulasi yang dipakai adalah dalam ukuran Byte (B).
Fungsi perangkat harddisk secara umum adalah untuk menyimpan data yang dihasilkan oleh pemrosesan perangkat komputer/laptop. Di dalamnya, terdapat sebuah ruang simpan utama dalam sebuah komputer. Dimana di situlah setiap data dan informasi disimpan olehnya. Selain memiliki ruang utama, harddisk juga mempunyai
komponen-komponen bagian. Adalah semacam ruang kecil yang terdiri atas direktori, folder, subdirektori, serta subfolder, yang digunakan untuk peletakan data dan informasi dari ruang utama harddisk.

2. Flash Disk

Flash Disk adalah media penyimpan dari floppy driveB jenis lain yang umumnya mempunyai kapasitas memori 128 MB s/d 64 GB, dengan menggunakan interface jenis USBC (Universal Serial Bus), sangat praktis dan ringan dengan ukuran berkisar 96 x 32 mm dan pada bagian belakang bentuknya agak menjurus keluar, digunakan untuk tempat penyimpanan baterai jenis AAA dan LCD (Untuk Fitur MP3, Voice Recording dan FM Tuner) dan terdapat port USB yang disediakan penutupnya yang berbentuk sama dengan body utamanya. Flash disk termasuk alat pemyimpanan data memory flash tipe NAND (Umumnya digunakan pada Kamera Digital), ada juga yang dikemas dalam ukuran kecil menjadi Compact Flash, SD-Card, MMC dan sejenisnya.

3. Floppy Disk

Floppy Disk (Disk Drive) adalah alat untuk membaca disket sebagai tempat menulis dan menyimpan data serta menjalankan sistem operasi dan aplikasi. Pada tahun 1990-an sampai dengan 2002 masih banyak menggunakan disket sebagai media penyimpanan data dan menjalankan sistem operasi dan aplikasi. Jenisnya terdiri dari 5.1/4 inci (ukuran besar) = 360-720 kb dan 3.1/5 inci (ukuran kecil) = 1,4 Mb. Sejak tahun 2003 sampai sekarang, alat yang satu ini mulai tidak digunakan lagi, karena kebanyakan orang lebih suka menggunakan flashdisk atau CD/DVD bahkan eksternal harddisk dan memory card.

4. CD (Compact Disc)

Pengertian CD atau Compact Disc adalah piringan yang berwana perak ini di buat dari lapisan plastik, yang di sinari oleh sinar laser. Nah, sinar laser ini membuat lubag-lubang yang sangat kecil yang tidak bisa di lihat secara kasat mata. Lubang-lubang tersebut akan membuat deretan kode yang berisi deretan data-data. Karena membentuk lubang-lubang, maka tidak bisa di tutup lagi. kemudian plastik-plastik itu akan di tutup lagi oleh cairan plastik, yang berguna sebagi pemantul dan pelindung lubang-lubang tadi yang berbentuk data. Proses pembuatannya di lakukan secara bertahap oleh mesin cetak.

5. DVD

DVD adalah singkatan dari Digital Versatile Disc atau Digital Video Disc, adalah media penyimpanan optik yang populer. Penggunaan utamanya untuk menyimpan video dan data. Sesuai dengan namanya, ukuran fisik standarnya sama dengan CD (Compact Disc), namun dengan kapasitas enam kali lipat dari CD. Untuk membaca DVD menggunakan sinar laser pada panjang gelombang 650nm (berwarna kemerahan).

6. Blue Ray

Cakram Blu-ray (Blu-ray Disc disingkat BD) adalah sebuah format cakram optik untuk penyimpanan media digital termasuk video definisi tinggi. Nama Blu-ray diambil dari laser biru-ungu yang digunakan untuk membaca dan menulis cakram jenis ini. Cakram Blu-ray dapat menyimpan data yang lebih banyak dari format DVD yang lebih umum karena panjang gelombang laser
biru-ungu yang dipakai hanya 405 nm dimana lebih pendek dibandingkan laser merah, 650 nm yang dipakai DVD dan CD. Format saingan Blu-ray yaitu HD DVD juga menggunakan laser jenis yang sama. Cakram Blu-ray dapat menyimpan 25 GB pada setiap lapisannya dibandingkan dengan 4,7 GB pada DVD. Beberapa pabrik bahkan telah membuat cakram Blu-ray satu lapis dan dua lapis (50 GB) yang dapat ditulis ulang. Beberapa studio film yang mendukung format Blu-ray bahkan telah merilis atau mengumumkan akan merilis film pada cakram berkapasitas 50 GB.blue ray lebih pendek dari panjang gelombang laser memungkinkan untuk menyimpan lebih banyak informasi pada 12 cm CD / DVD ukuran disk. Minimum "spot size" di mana sebuah laser dapat terfokus dibatasi oleh difraksi, dan bergantung pada panjang gelombang dari cahaya dan kecepatan rana numerik dari lensa yang digunakan untuk fokus itu. Dengan penurunan panjang gelombang, meningkatkan kecepatan rana numerik 0,60-0,85 dan membuat penutup lapisan tipis agar terhindar dari efek optik yang tidak diinginkan, laser dapat difokuskan ke tempat yang lebih kecil. Hal ini memungkinkan lebih banyak informasi yang akan disimpan di daerah yang sama.

7. Fluorescent Multilayer DISK(FM DISK)

Fluorescent Multilayer Disc (FM Disc) adalah jenis Optical disk yang mampu menampung sampai 140 GB data sekaligus, dengan kecepatan baca data sampai 1 GB per detik.
FM Disc berbeda dengan kepingan yang beredar saat ini. Warnanya tidak keperakan atau keemasan, melainkan bening seperti sebuah plastik transparan biasa.

8. RAM (Random Access Memory)

RAM adalah memory tempat penyimpanan sementara pada saat komputer dijalankan dan dapat diakses secara acak atau random. Fungsi dari RAM adalah mempercepat pemprosesan data pada komputer. Semakin besar RAM yang dimiliki, semakin cepatlah komputer. Berikut adalah jenis-jenis dari RAM.
  • RAM (Dynamic RAM) adalah jenis RAM yang secara berkala harus disegarkan oleh CPU agar data yang terkandung didalamnya tidak hilang.
  • SDRAM (Sychronous Dynamic RAM) adalah jenis RAM yang merupakan kelanjutan dari DRAM namun telah disinkronisasi oleh clock sistem dan memiliki kecepatan lebih tinggi daripada DRAM. Cocok untuk sistem dengan bus yang memiliki kecepatan sampai 100 MHz.

 9. Cache Memory

Cache Memory adalah memory yang berukuran kecil yang sifatnya temporary (sementara). Walaupun ukuran filenya sangat kecil namun kecepatannya sangat tinggi. Dalam terminologi hadware, istilah ini biasanya merujuk pada memory berkecepatan tinggi yang menjembatani aliran data antara processor dengan memory utama (RAM) yang biasanya memiliki kecepatan yang lebih rendah. Fungsi dari Cache Memory adalah sebagai tempat menyimpan data sementara atau intruksi yang diperlukan oleh processor. Secara gampangnya, cache berfungsi untuk mempercepat akses data pada komputer karena cache menyimpan data atau informasi yang telah di akses oleh suatu buffer, sehingga meringankan kerja processor.

10. ROM (Read Only Memory)

Pengertian, Jenis - Jenis dan Fungsi ROM (Read Only Memory). ROM merupakan singkatan dari Read Only Memory. ROM adalah perangkat atau peralatan proses yang terdapat di dalam CPU. ROM berisikan suatu program yang telah diterapakan oleh pembuat perangkat komputer dan keberadaan program ini tidak dapat diubah, ditambah, maupun dikurangi oleh pemakai Komputer. Isi ROM diperlukan pada saat computer dihidupkan. Perintah yang ada di dalam ROM sebagian akan
dipindahkan ke RAM. Di antara perintah dari ROM adalah perintah untuk membaca system operasi dari disk, perintah untuk mengecek semua peralatan yang ada di unit system, dan perintah untuk menampilkan pesan di layar. Isi ROM tidak akan hilang meskipun aliran listrik padam.

sumber: http://dickyamahendra.blogspot.co.id/2015/01/perangkat-penyimpanan-dan-penyediaan-data.html

Minggu, 06 Maret 2016

Pengkabelan

PENGKABELAN(WIRING)
         halo sobat kali ini saya akan memposting tentang pengkabelan pada jaringan, tidak usah lama-lama langsung saja pada intinya saja ini dia artikelnya.
dalam pengkabelan di jaringan Terdapat beberapa tipe pengkabelan yang biasa digunakan dan dapat digunakan untuk mengaplikasikan Windows, yaitu:

1. Thin Ethernet (Thinnet)
Thin Ethernet atau Thinnet memiliki keunggulan dalam hal biaya yang relatif lebih murah dibandingkan dengan tipe pengkabelan lain, serta pemasangan komponennya lebih mudah. Panjang kabel thin coaxial/RG-58 antara 0.5 – 185 m dan maksimum 30 komputer terhubung.

2. Thick Ethernet (Thicknet)
Dengan thick Ethernet atau thicknet, jumlah komputer yang dapat dihubungkan dalam jaringan akan lebih banyak dan jarak antara komputer dapat diperbesar, tetapi biaya pengadaan pengkabelan ini lebih mahal serta pemasangannya relatif lebih sulit dibandingkan dengan Thinnet. Pada Thicknet digunakan transceiver untuk menghubungkan setiap komputer dengan sistem jaringan dan konektor yang digunakan adalah konektor tipe DIX. Panjang kabel transceiver maksimum 50 m, panjang kabel Thick Ethernet maksimum 500 m dengan maksimum 100 transceiver terhubung.


3. Twisted Pair Ethernet
Kabel Twisted Pair ini terbagi menjadi dua jenis yaitu shielded dan unshielded. Shielded adalah jenis kabel yang memiliki selubung pembungkus sedangkan unshielded tidak mempunyai selubung pembungkus. Untuk koneksinya kabel jenis ini menggunakan konektor RJ-11 atau RJ- 45. Pada twisted pair (10 BaseT) network, komputer disusun membentuk suatu pola star. Setiap PC memiliki satu kabel twisted pair yang tersentral pada HUB. Twisted pair umumnya lebih handal (reliable) dibandingkan dengan thin coax karenaHUB mempunyai kemampuan data error
correction dan meningkatkan kecepatan transmisi. Saat ini ada beberapa grade, atau kategori dari kabel twisted pair. Kategori 5 adalah yang paling reliable dan memiliki kompabilitas yang tinggi, dan yang paling disarankan. Berjalan baik pada 10Mbps dan Fast Ethernet (100Mbps). Kabel kategori 5 dapat dibuat straight-through atau crossed.
Kabel straight through digunakan untuk menghubungkan komputer ke HUB. Kabel crossed digunakan untuk menghubungkan HUB ke HUB. Panjang kabel maksimum kabel Twisted-Pair adalah 100 m.

4. Fiber Optic
Jaringan yang menggunakan Fiber Optic (FO) biasanya perusahaan besar, dikarenakan harga dan proses pemasangannya lebih sulit. Namun demikian, jaringan yang menggunakan FO dari segi kehandalan dan kecepatan tidak diragukan. Kecepatan pengiriman data dengan media FO lebih dari 100Mbps dan bebas pengaruh lingkungan 
mungkin cuma itu yang dapat saya bagikan, semoga bermanfaat, dan bisa menambah ilmu sobat semuanya.
 
sumber : http://syahrulshare22.blogspot.co.id/2013/07/pengkabelan-wiring_27.html

Blender

BLENDER
Blender adalah perangkat lunak sumber terbuka grafika komputer 3D. Perangkat lunak ini digunakan untuk membuat film animasi, efek visual, model cetak 3D, aplikasi 3D interaktif dan permainan video. Blender memiliki beberapa fitur termasuk pemodelan 3D, penteksturan, penyunting gambar bitmap, penulangan, simulasi cairan dan asap, simulasi partikel, animasi, penyunting video, pemahat digital, dan rendering.
Kelebihan Blender 3D

  • Tidak membutuhkan ruang kapastias yang banyak
  • Software Open Source, jadi dapat dijalankan di operating sistem Linux
  • Tidak berat saat melakukan render
  • Dan mudah untuk digunakan
Kelemahan Blender 3D
  • Tool yang dimiliki tidak lengkap seperti 3D Max
  • Tampilan cukup berantakan
  • Semua proses dilakukan dengan manual
Secara default saat membuka aplikasi Blender, tampilan Blender yang akan muncul adalah seperti berikut.
Klik kiri pada sembarang tempat untuk menampilkan factory settings pada Blender, sehingga akan tampil fitur seperti berikut.
  1. Header :Menu utama Blender yang terdiri dari File, Add, Render, dan Help.
  2. Viewport :Tampilan yang terdiri dari objek 3D dan objek lainnya.
  3. Toolbar :Terdiri dari daftar tools yang memiliki sifat dinamis  menurut objeknya.
  4. Outliner :Struktur data dari objek pada Blender.
  5. Properties :Panel yang memuat berbagai macam perintah untuk  memodifikasi   objek atau animasi dan bersifat dinamis mengikuti objek atau tools yang sedang aktif.
  6. Timeline :Instruksi yang terkait dengan frame animasi atau untuk sequencer.
 
 

Subnetting

Pengertian Subnetting

Subnetting adalah proses memecah jaringan / network menjadi beberapa sub network atau dalam pengertian lain menurut saya adalah menjadikan host sebagai subnet.

Mengapa dibutuhkan Subnetting ?

Subnetting dibutuhkan untuk efisiensi dan optimalisasi suatu jaringan. Sebagai contoh apabila pada sebuah perusahaan terdapat 120 komputer dan di perusahaan tersebut terdiri dari 4 divisi yang setiap divisinya terdapat 30 komputer. Tentu akan sangat sulit bagi administrator jaringan untuk mengelola 120 komputer yang terdapat dalam satu jaringan tunggal, untuk itulah pembagian jaringan diperlukan agar administrator jaringan dapat lebih mudah mengelola jaringan.

Keuntungan 

  • Mempermudah pengelolaan jaringan
  • Untuk mengoktimalisasi jaringan karena tidak terpusat pada satu jaringan tunggal
  • Mempermudah pengidentifikasian masalah dan mengisolasi masalah hanya pada satu subnet tertentu

Perhitungan Subnetting

Penulisan IP address umumnya adalah 192.168.1.1 tetapi pada beberapa waktu ada juga yang menulis 192.168.1.1 / 24 itu dibacanya 192.168.1.1 dengan subnet mask 255.255.255.0 kerena /24 diambil dari penghitungan 24 bit subnet mask di tulis "1", dengan begitu subnetmasknya adalah 11111111.11111111.11111111.00000000 (255.255.255.0). Konsep inilah yang disebut CIDR (classless inter-domain routing).

Subnet mask yang digunakan untuk subnetting

255.128.0.0 / 9
255.192.0.0 / 10
255.224.0.0 / 11
255.240.0.0 / 12
255.248.0.0 / 13
255.252.0.0 / 14
255.254.0.0 / 15
255.255.0.0 / 16
255.255.128.0 / 17
255.255.192.0 / 18
255.255.224.0 / 19
255.255.240.0 / 20
255.255.248.0 / 21
255.255.252.0 / 22
255.255.254.0 / 23
255.255.255.0 / 24
255.255.255.128 / 25
255.255.255.192 / 26
255.255.255.224 / 27
255.255.255.240 / 28
255.255.255.248 / 29
255.255.255.252 / 30

Perhitungan pada IP kelas C

Sebagai contoh network address 192.168.1.0 /26
IP address : 192.168.1.0
Subnet mask : /26 = 255.255.255.192 (11111111.11111111.11111111.11000000)
Perhitungan

1. Jumlah subnet -->  Rumus = 2dimana x adalah banyaknya binari 1 pada oktet terakhir pada subnet mask (8 angka terakhir bagi  yang belum tahu).
Pada contoh diatas terdapat 2 binari satu pada oktet terakhir jadi 22  = 4. Jadi jumlah subnetnya adalah 4.

2. Jumlah host per subnet --> Rumus =2-2 dimana y adalah banyaknya binari 0 pada oktet terakhir pada subnet mask.
Pada contoh diatas terdapat 6 binari nol pada oktet terakhir jadi 26 - 2 = 62. Jadi jumlah host per subnetnya adalah 62.

3. Blok subnet -->  Rumus = 256 - nilai terakhir dari subnet mask dan lipatkan hasil pengurangan itu hingga mencapai jumlah subnet yang dibutuhkan (0 termasuk subnet).
Pada contoh diatas nilai terakhir pada subnet mask adalah 192, jadi 256 - 192 = 64. Blok subnetnya adalah 0, 64, 128, dan 192.

4. Host dan broadcast yang digunakan --> host yang digunakan adalah satu angka setelah subnet sedangkan broadcast adalah satu angka sebelum subnet.

Subnet 192.168.1.0 192.168.1.64 192.168.1.128 192.168.1.192
Host pertama 192.168.1.1 192.168.1.65 192.168.1.129 192.168.1.193
Host terakhir 192.168.1.62 192.168.1.126 192.168.1.190 192.168.1.254
Broad cast 192.168.1.63 192.168.1.127 192.168.1.191 192.168.1.255

Perhitungan pada IP kelas B

Sebagai contoh network address 175.1.0.0 /19
IP address : 175.1.0.0
Subnet mask : /19 = 255.255.224.0 (11111111.11111111.11100000.00000000)
Perhitungan
1. Jumlah subnet --> Rumus = 2dimana adalah banyaknya binari 1 pada dua oktet terakhir pada subnet mask (16 angka terakhir).
Pada contoh diatas terdapat tiga binari "1" pada dua oktet terakhir, jadi 2= 8. Jadi jumlah subnetnya adalah 8.

2. Host per subnet --> Rumus = 2- 2 dimana y adalah banyaknya binari 0 pada dua oktet terakhir pada subnet mask.
Pada contoh diatas terdapat 13 binari "0" pada dua oktet terakhir, jadi 213 - 2 = 8190. Jadi jumlah host per subnetnya adalah 8190.

3. Blok subnet --> Rumus = 256 - nilai terakhir dari subnet mask dan lipatkan hasil pengurangan itu hingga mencapai jumlah subnet yang dibutuhkan (0 termasuk subnet).
Pada contoh diatas nilai terakhir adalah 224, jadi 256 - 224 = 32. Blok subnetnya adalah 0, 32, 64, 96, 128, 160, 192, dan 224.

4. Host dan broadcast yang digunakan --> host yang digunakan adalah satu angka setelah subnet sedangkan broadcast adalah satu angka sebelum subnet.
Berikut adalah tabel penjelasan 2 subnet pertama dan 2 subnet terakhir.

Subnet 175.1.0.0 175.1.32.0 175.1.192.0 175.1.224.0
Host pertama 175.1.0.1 175.1.32.1 175.1.192.1 175.1.224.1
Host terakhir 175.1.31.254 175.1.63.254 175.1.223.254 175.1.255.254
Broad cast 175.1.31.255 175.1.63.255 175.1.223.255 175.1.255.255

Perbedaannya dengan perhitungan IP kelas C ketika oktet terakhir sudah mencapai 255, oktet ketiga maju dari 0 menjadi 1 dan ketika sudah mencapai 255 lagi maju lagi dari 1 menjadi 2. (contoh : 175.1.0.255 --> 175.1.1.0 -->175.1.1.1)

Perhitungan pada IP kelas A

Sebagai contoh network address 72.0.0.0 /12
IP address : 72.0.0.0
Subnet mask : /12 = 255.240.0.0 (11111111.11110000.00000000.00000000)
Perhitungan
1. Jumlah subnet --> Rumus = 2x  dimana x adalah banyaknya binari "1" pada 3 oktet terakhir pada subnet mask (24 angka terakhir).
Pada contoh diatas terdapat 4 binari 1 pada 3 oktet terakhir, jadi 2= 16. Jadi jumlah subnetnya adalah 16.

2. Jumlah host per subnet --> Rumus = 2- 2 dimana y adalah banyaknya binari "0" pada 3 oktet terakhir pada subnet mask.
Pada contoh diatas terdapat 20 binari 1 pada 3 oktet terakhir, jadi 220 = 1.048.576. Jadi jumlah host per subnetnya adalah 1.048.576.

3. Blok subnet --> Rumus = 256 - nilai terakhir dari subnet mask dan lipatkan hasil pengurangan itu hingga mencapai jumlah subnet yang dibutuhkan (0 termasuk subnet).
Pada contoh diatas nilai terakhir adalah 240, jadi 256 - 240 = 16. Blok subnetnya adalah 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, dan 240.

4. Broadcast dan host yang digunakan --> host yang digunakan adalah satu angka setelah subnet sedangkan broadcast adalah satu angka sebelum subnet.
Berikut adalah tabel penjelasan 2 subnet pertama dan 2 subnet terakhir.

Subnet 72.0.0.0 72.16.0.0 72.224.0.0 72.240.0.0
Host prtm 72.0.0.1 72.16.0.1 72.224.0.1 72.240.0.1
Host trkhr 72.15.255.254 72.31.255.254 72.239.255.254 72.255.255.254
Broad cast 72.15.255.255 72.31.255.255 72.239.255.255 72.255.255.255

Perbedaannya dengan IP address kelas B ketika oktet terakhir mencapai 255, oktet ketiga maju dari 0 menjadi 1 dan ketika oktet ketiga sudah mencapai 255, oktet kedua maju dari 0 menjadi 1 (contohnya : 72.0.0.0 --> 72.0.0.255 --> 72.0.1.0 --> 72.0.255.0 --> 72.1.0.0).

sumber: http://bangun11-tkj.blogspot.co.id/2013/04/belajar-subnetting.html

VideoPad

VIDEOPAD
VideoPad adalah aplikasi video editing yang dikembangkan NCH software, aplikasi ini mempunyai banyak fiture hebat yang mungkin tidak ada disoftware/aplikasi lain. Contohnya Converting video dan burning video/upload ke youtube. 


Fitur-fitur di videopad:

1.Memotong dan membuat duplikat clip

2.Menambahkan teks pada clip

3.Menambahkan efek transisi diantara clip-clip

4.Adanya efak-efek yang dapat ditambahkan/disisipkan dalam clip atau potongan clip

5.Menambahkan Audio pada clip

6.Menambahkan gambar blank pada clip

7.Dapaat mengcapture video langsung daari webcam atau device lainnya

8.Kita dapat menambahkan narasi yang dapat disisipkan di dalam clip